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● Neural approaches:

○ Large amounts of annotated training data (errors in the annotations!)

○ Not guaranteed consistency of predictions

● Neuro-symbolic approaches:

○ Low level processing with high level reasoning

○ Events - artificial scenarios -> issues (e.g. scalability)

Introduction and motivation



Contributions

1. A Neuro-symbolic approach for event recognition in a real world scenario (sports) (MILP)

2. Experiment: Neural vs Neuro-symbolic
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○                      ->  highjump
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● Two examples of interpretations:

○
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○ …

● Cost function:

● Select:

● Supervision:
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neuro-symbolic prediction
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Experimental setting
● Research question: 

Does our neuro-symbolic approach lead to an advantage with respect to a fully neural approach for

(structured  and atomic) event recognition using weak and limited supervision?

● Clips from Multi-THUMOS dataset

● Scenario:

○ Clips of different length (only one structured event)

○ Learning -> Fully supervision in terms of structured event and limited (and noisy) labelling:

● How the prediction of structured and atomic events change when increase supervision of atomic events
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Conclusion and future works

● Summary:

○ A Neuro-symbolic approach for (structured and atomic) event recognition exploiting knowledge

○ Real world scenario

○ Our approach outperforms neural baseline in terms of detection of atomic events

● Future  works:

○ Structured events events:

■ Multiple actors

■ More complex relationships (e.g. overlapping of events)



Thank you!
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MILP problem
Soft constraints

NN output

Hard constraints


