The Tail-Recursive Fragment of Timed Recursive CTL

 ${\sf Florian} \ {\sf Bruse}^1 \quad {\sf Martin} \ {\sf Lange}^1 \quad {\sf Etienne} \ {\sf Lozes}^2$

- University of Kassel, Germany
- ² Université Cote d'Azur, France

29th Int. Symp. on Temporal Representation and Reasoning, TIME'22 07/11 - 09/11/2022

Some Extensions of CTL

Alur/Courcoubetis/Dill, LICS'90: Timed CTL (TCTL)

- interpreted over real-time systems (e.g. timed automata)
- model checking: PSPACE-complete

Bruse/L., TIME'20: Recursive CTL (RecCTL)

- extension of discrete-time CTL for greater (non-regular) expressiveness
- model checking: EXPTIME-complete

Bruse/L., TIME'21: Timed Recursive CTL (TRecCTL)

- ... for greater expressiveness over real-time systems
- model checking: 2EXPTIME-complete

Is it possible to have high expressiveness over real-time systems and slightly lower model checking complexity? ... Yes!

(Real-Time) CTL with Recursion

syntax of TRecCTL:

$$\varphi ::= q \mid x \mid z < r \mid \varphi \lor \varphi \mid \neg \varphi \mid E(\varphi U^{J} \varphi) \mid \Phi(\varphi_{1}, \dots, \varphi_{k})$$

$$\Phi ::= \mathcal{F} \mid \operatorname{rec} \mathcal{F}(x_{1}, \dots, x_{k}).\varphi$$

with

- q an atomic proposition, e.g. "the traffic light is red"
- x and \mathcal{F} formula variables
- z a clock, $r \in \mathbb{Q}$
- J an interval over Q

two types of formulas:

- φ : propositional formulas interpreted as sets of states, e.g. $AG^{>3}(\text{req} \to \text{EF}^{\leq 1}\text{grnt})$
- Φ: first-order formulas interpreted as functions mapping multiple sets to one set

Example

TRecCTL can express the property "whenever a request can be issued within time 2n, then a grant can be done within time 3n (for any $n \in \mathbb{N}$)"

let
$$\Phi := \operatorname{rec} \mathcal{F}(x, y).(x \to y) \wedge \mathcal{F}(\operatorname{EF}^{\leq 2} x, \operatorname{EF}^{\leq 3} y)$$

the property above is formalised by $\Phi(req, grnt)$

main tool for understanding complex formulas: unfolding+ β -reduction into potentially infinitary TCTL-formula:

$$\begin{split} \Phi(\mathsf{req},\mathsf{grnt}) &\equiv \big((x \to y) \land \Phi(\mathsf{EF}^{\leq 2} x, \mathsf{EF}^{\leq 3} y) \big) \big(\mathsf{req}, \mathsf{grnt} \big) \\ &\equiv \big(\mathsf{req} \to \mathsf{grnt} \big) \land \Phi(\mathsf{EF}^{\leq 2} \mathsf{req}, \mathsf{EF}^{\leq 3} \mathsf{grnt} \big) \\ &\equiv \big(\mathsf{req} \to \mathsf{grnt} \big) \land \big(\mathsf{EF}^{\leq 2} \mathsf{req} \to \mathsf{EF}^{\leq 3} \mathsf{grnt} \big) \land \Phi(\mathsf{EF}^{\leq 2} \mathsf{EF}^{\leq 2} \mathsf{req}, \mathsf{EF}^{\leq 3} \mathsf{EF}^{\leq 3} \mathsf{grnt} \big) \\ &\equiv \big(\mathsf{req} \to \mathsf{grnt} \big) \land \big(\mathsf{EF}^{\leq 2} \mathsf{req} \to \mathsf{EF}^{\leq 3} \mathsf{grnt} \big) \land \Phi(\mathsf{EF}^{\leq 4} \mathsf{req}, \mathsf{EF}^{\leq 6} \mathsf{grnt} \big) \\ &\equiv \ldots \equiv \bigwedge_{n \geq 0} \big(\mathsf{EF}^{\leq 2n} \mathsf{req} \to \mathsf{EF}^{\leq 3n} \mathsf{grnt} \big) \end{split}$$

Model Checking Timed Recursive CTL

Proposition 1 (Bruse/L., TIME'21)

Model Checking TRecCTL (over timed systems represented as timed automata) is 2EXPTIME-complete

upper bound using untiming construction: exponential reduction to exponential model checking of discrete-time RecCTL

lower bound: describe behaviour of det. 2EXPTIME machine: $\operatorname{rec} \mathcal{F}_a(s,t) \dots \mathcal{F}_b(s-1,t-1) \wedge \mathcal{F}_c(s,t-1) \wedge \mathcal{F}_d(s+1,t-1) \dots$

 : I			: L
	а		
 b	С	d	
			Γ

An Attempt to Eliminate First-Order Formulas

reconsider $(\operatorname{rec} \mathcal{F}(x,y).(x \to y) \wedge \mathcal{F}(\operatorname{EF}^{\leq 2} x,\operatorname{EF}^{\leq 3} y))(\operatorname{req},\operatorname{grnt})$ from above

idea:

- replace $\mathcal{F}(x,y)$ with formal parameters x,y with $\mathcal{F}_{x,y}$ for suitably many actual parameters x,y
- connect them all using simultaneous fixpoint definitions (syntactic sugar)

three problems:

- ① obviously not a finite formula → not a problem: we're doing model checking!
- 2 would only work when there is no fixpoint nesting (as in ... $\mathcal{F}(q \wedge \mathcal{F}x)$)
- the result would not be TCTL (but of the timed μ -calculus with EXPTIME model checking!)

Tail-Recursive Formulas

Obs.: a fragment with genuinely lower model checking complexity than 2EXPTIME will have to restrict recursion structurally \leadsto the tail-recursive fragment

tail-recursive formulas intuitively:

- free variables in $\bar{\psi}$ amongst \bar{x} in $\operatorname{rec} \mathcal{F}(\bar{x}) \dots \mathcal{F}(\bar{\psi})$ \leadsto no $\dots \mathcal{F}(q \land \mathcal{F}x) \dots$
- recursive formulas are aconjunctive: $\mathcal F$ occurs not in both ψ_1,ψ_2 in $\mathcal F(\bar x)\ldots(\psi_1\wedge\psi_2)$
- → top-down model checking can avoid backtracking for first-order formulas
- similar restriction for temporal formulas

formal definition via simple type system:

$$\frac{ \emptyset \vdash_{\operatorname{tr}} p }{\emptyset \vdash_{\operatorname{tr}} p } \frac{ \emptyset \vdash_{\operatorname{tr}} \chi}{\emptyset \vdash_{\operatorname{tr}} \chi} \frac{ \emptyset \vdash_{\operatorname{tr}} \varphi}{\emptyset \vdash_{\operatorname{tr}} \chi} \frac{ \emptyset \vdash_{\operatorname{tr}} \varphi}{\emptyset \vdash_{\operatorname{tr}} \neg \varphi} \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \quad \mathcal{V}' \vdash_{\operatorname{tr}} \varphi_2}{\mathcal{V} \cup \mathcal{V}' \vdash_{\operatorname{tr}} \varphi_1 \vee \varphi_2} \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi}{\mathcal{V} \setminus \{\mathcal{F}\} \vdash_{\operatorname{tr}} \operatorname{rec} \mathcal{F}(x_1, \dots, x_m). \varphi} \\ \frac{ \emptyset \vdash_{\operatorname{tr}} \varphi_1 \quad \mathcal{V} \vdash_{\operatorname{tr}} \varphi_2}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \wedge \varphi_2} \frac{ \emptyset \vdash_{\operatorname{tr}} \varphi_1 \quad \mathcal{V} \vdash_{\operatorname{tr}} \varphi_2}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \vee \varphi_2} \frac{ \emptyset \vdash_{\operatorname{tr}} \varphi_1 \quad \emptyset \vdash_{\operatorname{tr}} \varphi_2}{\emptyset \vdash_{\operatorname{tr}} \varphi_1 \vee \varphi_2} \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi} \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \vee \varphi} \\ \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \vee \varphi}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \wedge \varphi} \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi_1 \vee \varphi} \frac{ \mathcal{V} \vdash_{\operatorname{tr}} \varphi}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi} \frac{\mathcal{V} \vdash_{\operatorname{tr}} \varphi}{\mathcal{V} \vdash_{\operatorname{tr}} \varphi} \frac{\mathcal$$

Model Checking Tail-Recursive TRecCTL: Upper Bound

Theorem 1

The model checking problem for tail-recursive TRecCTL is in EXPSPACE.

PROOF: using the untiming construction wisely

Model Checking Tail-Recursive TRecCTL: Lower Bound

Theorem 2

The model checking problem for tail-recursive TRecCTL is EXPSPACE-hard.

PROOF: by reduction from the $(2^n \times \infty)$ -tiling problem

existence of successful tiling expressed by

$$(\operatorname{rec} \mathcal{F}(r).\operatorname{fin}(r) \vee \exists r'.\operatorname{match}(r,r') \wedge \mathcal{F}(r'))(\operatorname{init})$$

over suitable timed automaton s.t. proposition r can encode a row

Encoding Rows

remember: propositions interpreted in $\mathcal{P}(Loc \times (Clocks \to \mathbb{R}^{\geq 0}))$

Obs.: sets of the form $\{(t_0, 0), (t_1, 1), \dots, (t_{2^n-1}, 2^n - 1)\}$ can be maintained, and they naturally encode a (potential) row!

$$egin{aligned} ext{isRow}(r) &:= \mathtt{AG}\Big(r
ightarrow ig(\operatorname{rec} \mathcal{F}(). \mathbf{z} = 2^n - 1 \lor \mathtt{EF}^{=1} \mathcal{F}() ig) \\ & \wedge ig(\bigvee_{t \in T} t \land \bigwedge_{t'
eq t} \neg t' ig) \\ & \wedge ig(\mathbf{z} < 2^n - 1
ightarrow \bigwedge_{t \in T} t
ightarrow \bigvee_{\substack{t' \in T \ (t,t') \in H}} \mathtt{EF}^{=1} t' ig) ig) \end{aligned}$$

Formalising Existential Quantification over Rows

Obs.: rows are naturally enumerable as base-|T|-numbers (with least significant bit at position 2^{n-1})

Ex.:
$$T = \{ \underbrace{\ \ \ \ }_{0}, \underbrace{\ \ \ \ \ }_{1}, \underbrace{\ \ \ \ \ \ }_{2} \}, \ n = 2, \text{ i.e. } 2^{n} - 1 = 3$$

$$\{(\underbrace{\ \ \ \ \ \ }_{0}, 0), (\underbrace{\ \ \ \ \ \ \ }_{1}, 1), (\underbrace{\ \ \ \ \ \ }_{2}, 2), (\underbrace{\ \ \ \ \ \ }_{1}, 3)\} \triangleq 2 \cdot 3^{3-0} + 2 \cdot 3^{3-1} + 0 \cdot 3^{3-2} + 1 \cdot 3^{3-3} = 73$$

Exc.: suppose r encodes $\hat{r} \in \{0, \dots, |T|^{2^n} - 1\}$. Write formula next(r) s.t. $\widehat{next(r)} = \hat{r} + 1$ by formalising digit-wise base-|T|-increments!

do existential quantification by enumeration of all candidates (in a tail-recursive way!):

$$\exists r'. \varphi(r') := (\operatorname{rec} \mathcal{F}(x). \varphi(x) \vee \mathcal{F}(\operatorname{next}(x)))(\operatorname{zero})$$

Conclusion

summary:

- TRecTCTL is a highly expressive specification logic for real-time systems
- model checking becomes more space efficient when recursion structure is restricted accordingly
- this is in line with findings on similar (discrete-time) temporal logics
- upper bounds unlikely to be improvable without giving up a lot of expressiveness: 2EXPTIME-, resp. EXPSPACE-hardness hold for very simple TA over a single clock already

outlook:

- whole other story: how to handle such high complexity in practice . . .
- decidability over extensions of plain timed automata

The End