Reasoning on Dynamic Transformations of

Symbolic Heaps

N. Peltier

Univ. Grenoble Alpes, CNRS, LIG, CAPP - ANR Project Narco
TIME 22 — 29th International Symposium on Temporal

Representation and Reasoning
November 2022

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

e Starting point :
o A fragment of separation logic (SL) with inductive definitions
(symbolic heaps)
e Specify pointer-based recursive data structures
e The entailment problem is decidable if the inductive definitions
satisfy some conditions (the PCE conditions)
@ How to handle dynamic transformations of the data
structures?

@ Entailment problems of the form :
¢ RV

where ¢ is an SL formula and W an LTL formulas built on SL
formulas, interpreted modulo some inductive rules R and
some finite transition system &

@ The problem is undecidable in general, decidable under some
conditions

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Syntax

@ Variables (no function symbols) interpreted as locations
(memory addresses)
o Equational atoms : x =y or x® y
@ Spatial atoms (describes the shape of the heap) :
e emp (“empty”)

o x+ (y1,...,¥k) ("x is the only allocated location and refers
to Yi,... 7yk")
o p(x1,...,xn), where p is an inductively defined spatial

predicate. Describes some part of the heap of unbounded size,
e.g., a list segment Is(x, y)

@ Usual connective : V (no negation, no conjunction)
@ Special connective : * (separating conjunction)
@ Quantifier 3 (no V)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Interpretations

Let Loc be an infinite (countable) set of locations (e.g., addresses).
Formulas are interpreted over structures (s,) where :

@ s is a function (store) mapping every variable to an element of
Loc

@ h is a partial finite function (heap) from Loc to Loc*

@ A location is allocated if it occurs in dom(h)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Evaluation

Let ¢ be a formula without spatial predicate symbols. (s,) = ¢ iff
one of the following conditions hold :
° ¢isx~y, 5(x)=s(y)and h =0
@ ¢pisxZy, s5(x)#s(y)and h =1
@ ¢gisempand h =10
® ¢is x> (y1,.-.,yk), b(s(x)) = (s(y1), .., 5(yx)) and
dom(h) = {s(x)}
@ ¢ = ¢1 V ¢y and there exists i = 1,2 such that (s,h) | ¢;
@ ¢ = dx ¢ and there exists ¢ € Loc such that
(slx < 4,0) v
@ ¢ = ¢1 * ¢2 and there exist disjoint heaps b1, ho such that
h =bh1Uby and for every i = 1,2, (s,b;) E ¢i

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Evaluation Of Inductively Defined

Predicates

o Every spatial predicate p is associated with a set of rules
p(x1,...,xn) < ¢ (provided by the user)

o We write 1) — 1) if ¢/ is obtained from) by replacing an
occurrence of an atom p(y1,...,yn) by
d)[x,'ey; | izl,...,n]

e (s,h) Er p(x1,...,xpn) iff there exists a formula ¢ not
containing any predicate symbol, such that (s,h) =r ¥ and
p(x1,...,xn) =%

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Non empty list segments :

Is(x,y) <= x~(y) base case
Is(x,y) < 3z (x> (z)x*Is(z,y)) inductive case

With this definition :

x—= (y)*xy— (2) Er Is(x, 2)
Is(x,y) *Is(y,z) Er Is(x, z)
Is(x,y) * Is(y, x) Er Juls(u, u)
Is(x,y) * Is(x, y') is unsatisfiable

x = (y)*y — (z2) * x = y is unsatisfiable

x> (y)xy = (z2) Frx %y

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Existing Results

e Satisfiability is decidable (Brotherston et al., LICS 14)

@ Entailment is undecidable in general : an easy reduction from
the inclusion problem for context-free grammars

o Decidable for a specific class of inductive definitions (losif,
Rogalewicz, Simacek, CADE 2013)

e A 2-EXPTIME algorithm (Katelaan and Zuleger, LPAR 20)

@ The 2-EXPTIME bound is tight (Echenim, losif and Peltier,
LPAR 2020)

o A 2-EXPTIME algorithm handling existential variables
(Echenim, losif, Peltier CSL 2020)

@ Other complexity results for specific fragments

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

A Class Of Inductive Definitions For Which Entailment Is

Decidable

3 conditions :

@ Progress (P) : Every rule allocates exactly one memory
location, i.e., is of the form

p(xi,...,xn) <= 3z1,. .o Zm - x1 = (y1,...,Yk) * &, where ¢
contains no
The variable x; is called the root of p(xi,...,xs)

@ Connectivity (C) : If an atom q(x1,...,x]) occurs in ¢, then
necessarily x; = y;, for some i =1,... k

© Establishment (E) : For every i =1,..., m, z is allocated in

all models of ¢

PCE problems : Progress, Connectivity and Establishment

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Heap Constraints

A heap constraint is a triple (51,57, X), where ST and S~ are
sets of symbolic heaps, ST #) and X is a finite set of variables

A heap constraint is satisfiable iff there exists a structure (s,)
satisfying all formulas in ST, satisfying no formula in S~ and
allocating no variables in X)
(Theoem |
The satistfiability problem is decidable for heap constraints (with
PCE rules)

Proof : an easy extension of existing results

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Dynamic Transformation Of Heaps : Actions

@ Terms : x or x.i, where x is a variable, i € N (non nested)
@ Basic actions :

o affectations : x := s, where x is a variable and s is a term
redirections : x.i := s, where s is a term
allocations : alloc(x) (x refers to (x,...,x))
desallocations : free(x)
null actions : pass
tests : test(y), where 7 is a condition, i.e., a boolean
combination of equations t &~ s between terms

@ (s,h)[a] : structure (s',h’) obtained by applying a on (s, h)
e (s,h)[a] is a partial function (a may “fail")

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Dynamic Transformation Of Heaps : Transition Systems

@ Transition systems are finite state automata, where edges are
labeled by actions
@ A run from an initial structure (s, b) is an infinite path

ai,...,an,... in the automaton such that there exists a
sequence (sj, ;) with :

o (s0,h0) = (s,h)
e Forall i >0, (si41,hi11) = (84, bi)[a;] (must be defined)

@ Only infinite runs are considered

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Transition Systems - Example

pass

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Formulas

Syntax :
@ LTL atoms : SL formulas , atomic conditions, actions and
states
@ Usual LTL connectives : =®, d Vv ¥, X o, d UV etc.
Semantics :

@ Given R and S, an LTL formula is interpreted w.r.t. some
initial (time 0) structure (s,) and run (s;,h;) (i € N)
(corresponding to a given path in the transition system)

@ SL atoms and conditions are interpreted on (s;, ;) at time i

@ Actions and states refer to the considered run : state and
transition applied at time /

@ LTL connectives are handled as usual

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Entailment Problem

Entailment problem :
o FRV
where
@ ¢ is an SL formula, W is an LTL formula

@ R is a set of inductive definitions (PCE), S is a transition
system

eg., Is(y,z) ES Fls(x,z) or Is(y, z) 3 G(2 = Is(x, z))

The entailment problem is undecidable

Proof : S encodes a Turing machine, ¢ allocates a tape of
unbounded size, W states that the machine does not terminate

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

A Restriction On Transition Systems

Definition

A system is oriented if affectations do not occur inside a cycle (i.e.,
no action x := s where x is a variable occurs inside a path from
some state g to q)

Our goal :

@ Define an algorithm to test entailments, that will terminate on
oriented systems

@ ldea : reduce the entailment problem to an LTL satisfiability
problem

@ Expresses transitions and SL properties as LTL formulas

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Encoding

@ Encoding of states and transitions is trivial
@ Encoding of “static” SL properties
o Dismiss unsatisfiable sets of SL literals (SL formulas or

negations of SL formulas)
e.g., the valid SL entailment
Is(x,y) * Is(y, z) Er Is(x, z)

should yield the LTL axiom :

=(Is(x,y) * Is(y, 2)) V Is(x, z)

@ Encode the semantics of actions, i.e. :

e state preconditions of actions

e.g. x.1:=y possible only if x is allocated
o relate (s,h) and (s, h)[a]

— use a weakest precondition calculus

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Weakest Precondition Calculus

@ Weakest precondition : given an SL formula ¢ and an action
a, wpc(¢, a) asserts conditions ensuring that ¢ is satisfied
after the action is performed

e Can wpc(¢, a) be computed and expressed in SL?

@ In some cases, yes, for instance :

o wpc(p, free(x)) = Iy ... Ayi (o * x = (y1,. .., ¥k)).
o wpc(p, x :=y) = ¢{x < y} (if x, y are variables)

@ For actions depending on x./, this is feasible only if x is

explicitly allocated in the formula ¢, i.e., if ¢ contains an

atom x — (x1,...,xk)
e For instance : wpc(Ix.(¢ * x — (x1,...,xk)), x.I :=y) is
AxAx (P x = (X1, ooy Xim1, Xy X1y - oy Xk) X X R Y)

but wpc(Is(x, z), x.i :== y) cannot be defined

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

How To Enforce The “Explicit” Allocation Of Variables?

Given an SL formula ¢ and a variable x, can we compute an SL
formula 1 such that :

@ 1 and ¢ are equivalent in all structures (s,) in which s(x) is
allocated

@ 1 contains an atom of the form x — (x1,...,xk)
Example :
o ¢=Is(y,z)
@ Solution :
Y = Jux—(2)xx=y)
VAu (x = (u) xIs(u,z) * x = y)
V(Is(y, x) £ x - (2))
V3u (Is(y, x) * x — (u) * Is(u, z))

Can v be computed automatically in all cases?

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Context Predicates

Answer : yes (for PCE rules), but this requires to create new
predicates and rules
@ For every pair of predicates p, g with arities n and m, define a
predicate (g —e p) of arity n+ m
o (g —p)x1,---yXn,¥1,--.,¥Ym) is satisfied by all (non empty)
structures that will satisfy p(x, ..., x,) after a disjoint heap
satisfying q(y1,...,ym) is added to the current heap
@ The rules of (¢ —e p) are defined exactly as those of p, except
that exactly one call to q(y1,...,¥Ym) is removed

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Context Predicates

More formally, for each rule

put,...,up) < Iw.(ur = (y) * p'(2) *)

we add :

(g—ep)(u1y... Un, Vi, .., Vm) <
w.(u1 = (y) * (g —= p')(Z,v1, .o, Vi) ¥ ¥)

(g—ep)(u1,...,Upy Ve, .., V) <
Iw.(ug = (y)xz~ (vi,...,vm) *¢) ifg=p

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Context Predicates

Given a formula ¢ and a variable x, v is the disjunction of
formulas obtained as follows :
@ Choose an atom p(y,z) in ¢, and either :
e add the condition x =~ y and replace p(y,z) by p(x,z)
o or replace p(y,z) by Fu((g — p)(y,z,x,u) * g(x,u))
@ In both cases, we get an atom with first argument x
@ By the progress condition, it suffices to unfold this atom once
to get an atom of the form x — (...)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Encoding (Continued)

@ Using context predicates, weakest preconditions can be
automatically computed in all cases

@ Allow one to encode all the properties of the transition
systems in LTL (see paper for the definition of the set of
axioms)

@ If S is oriented then the obtained set of axioms is finite

@ Intuition : the set of “visible” locations is finite, hence the set
of symbolic heaps that need to be considered is finite

@ The entailment problem ¢ }:‘7% W can be reduced to an LTL
satisfiability test (if R is PCE and S is oriented)

@ Generating all axioms at once is not practical : use a
incremental model-refinement algorithm instead

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Entailment Checking Algorithm

A+ {¢a ar, _'w}
while A admits an LTL interpretation Z do
ST+ {¢|Z(¢,0) = true, ¢ is a symbolic heap}
ST+ {¢|Z(#,0) = false, ¢ is a symbolic heap}
X+ {x € V*|Z(¢,0) |~ alloc(x) (i.e. Z(¢,0) = x.1 =~ x.1) }
if Heap constraint (S*, S, X) is unsatisfiable then
A« AU {x}, where x is an LTL-encoding of =(5%,5, X)
else
Let (s,h) be an R-model of (57,57, X)
if Z corresponds to a run r in S from (s, b) then
Return (s, b)
else
Let 4 be an axiom s.t. (s,h) S ¥
A+— AU {y}
end if
end if
end while
Return T

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Properties Of The Entailment Checking Algorithm

o If the algorithm returns (s, h) then (s,h) is a counter-example
of the considered entailment problem

@ If the algorithm returns T then the considered entailment
problem is valid

@ The algorithm always terminates if S is oriented

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Encoding (Continued)

Why do we need both pre- and post-conditions ?

@ Weakest preconditions allow one to move all constraints
backward in the path, so that we get constraints on the initial
structure (at t = 0)

@ Strongest postconditions ensure that at every time at least
one symbolic heap is satisfied

— allows one to encode all elementary conditions into the
considered fragment of SL

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

@ Is the algorithm complete (for counter-examples) on non
oriented problems?

o Complexity ? (2- or 3-EXPTIME?)
@ How to handle non deterministic actions? (e.g., allocate a
new, arbitrary chosen, location)

@ Implementation

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

