290th International Symposium on Temporal Representation and Reasoning

TIME 2022, October 7-9,2022

Gabbay Separation for the Duration Calculus
a sequel paper of
A Separation Theorem for Discrete Time Interval Temporal Logic

JANCL, 2022, joint with Ben Moszkowski

Dimitar P. Guelev

http://www.math.bas.bg/ gelevdp

Plan of Talk

Introduction: LTL with Past and Gabbay's theorem

Preliminaries on Interval Temporal Logic (ITL, Moszkowski, Moszkowski et al,
1983-)

ITL with (A), (A), also written <;, <, in DC

The Separation Theorem in ITL [Guelev and Moszkowski, JANCL 2022]

DC and the relevant classes of formulas: (strictly) past and (strictly) future.
Key part of the proof (for both ITL and DC.)

Questions

The Grand Prototype:
Separation in LTL with Past (PLTL) [Gabbay, 1989]

Set of atomic propositions AP. An interval I CZ; 0:1 — P(AP), i € 1.
A:=true| p |-A|AVA|OA| AUA| ©A| ASA
—~— _ -

€cAP ~ not allowed ~ not allowed
in past formulas in future formulas

o i=0A iff oit1=A, oik=©A iff oi—-1EA
k—1
o,i=AUB iff Jk(o,i+kEBAN N o,i+jEA)

j=0
0
o,i =ASB iff Jk(o,i—kEBAN N\ o,i+jEA)
j=—k+1

SA=true S A; Strictly future (past) formulas: O F (©P).

Theorem 1 (Gabbay, 1989) Fvery LTL formula is equivalent to a BC of
past formulas, strictly future formulas and atomic propositions.

An Example Generic Application to Synthesis

Any separated A is equivalent to a boolean combination of past and future
formulas in conjunctive normal form. Let

A2 N(Pea VeV P, VO Fii Vo VO Fi)
k

TV TV

= Py, ,past = O Fy,future

Then = A= APy D OF}, 'If =Py is observed, then F} is forthcoming’.
k

| = = Otrue,

Consider OS(I A B); let A=<(1 A B)

Then: = 09(IAB) = \ O(-P; D O Fy)
k

ITL

A vocabulary is a set of atomic propositions V.

Semantics

c=d%t... e P(V)T UP(V)* have been dubbed intervals,

These are sequences [0, ..., |o|] = P(V), like (not necessaryly infinite) LTL
traces.

Unlike O',i ':PLTL ..., WE have o ’:ITL cen.

However, accommodating expanding modalities takes first moving to
O',’i,j‘:ITL..., 1< 7, 1,7 € domo

where 0 : I — P(V), I C Z - an interval.

= for A:= false | p| ADA|OA| A;A| A*, peV
oEDp iff peco!
next o =OA iff |o|>1andoll =4

chop o |= A; B iff for some k < |o|, k <w, 0%* = A and 6" = B

chop-star o = A* iff either |o| = 0,

or there exists a finite sequence
ko=0<ki<...<k,<|o|, kn <w
such that g*i-*i+1|= A for i =0,...,n — 1, and o T |= A,

or || = w and there exists an infinite sequence

ko =0 < ky < ... such that g%i-Fi+1 |= A for all i < w.

0,i,] = A generalizes o'/ = A for the ‘core’ ITL operators.

(c% ..)z eb. ofif0<b<e<|o; (c%"..)T (R) ifk <ol

6

The Neighbourhood Modalities ¢;, <., AKA (A) and (A)

o,i,7 = <1A iff i > —o0 and there exists a k < i such that 0, k,i = A

0,1, =<CrA iff j < oo and there exists a k > j such that 0,5,k E A

The Separation Theorem in ITL with $; and <,
Introspective formulas C': - ‘core’ I'TL (just chop and possibly chop-star)
Past formulas: P u=C | =P | PV P | &P
Past = no <,, and no <; in the scope of chop or chop-star.

Strictly past formulas: < (P; skip)

skip = O = O true provides that the P-interval and the reference interval are

apart.
Future formulas (<, instead of &;): F =C | =F | FVF | O.F.

Stricty future formulas: <. (skip; F') where F' is future.

Theorem 2 (separation for ITL, Guelev and Moszkowski, JANCL 2022)
Fvery I'TL formula is equivalent to a boolean combination of strictly past

formulas, strictly future formulas and introspective formulas.

(1) The point-based prototype'’s p-s become interval C-s.

8

The Theorem Applies to the Weak Binary Chop Inverses

o,i,j =A/B iff forall k>j ifo,j,k = B theno,i,k E A.
o,i,7 = A\B iff forall k <4, if o,k,i = B then 0,k,j E A.

Interestingly, some of the technique for proving separation helps establishing:
ITL+ <, =ITL+ (./.); ITL+ ©; =ITL + (.\.)

Past chop, signed chop, embedding all reasoning in formulas that are evaluated

at infinite intervals.

The Prototype’s Applications

These, | believe, can be ported from the LTL case; that automatically leads to
stronger results, given the greater expressive power of ITL.

Separation at Work in Branching Time Logics with Past

The key observation looks next to trivial but saves a lot of hassle:

0,1 = A iff a o’ exists (in the model) s.t. 0’|y =0l sy and o,i = A
Now, A may be imposing restrictions on both o|; ;) and o 3.

If, eg. EA=PAF, then =3(PAF)=PA3IF.

Hence restricting to only F's in the scope of 4 WL of expressiveness.

1 is CTL"'s branching time construct; other BT constructs admit the same
transformations.

The same applies to branching time systems that have an interval-based set of
(linear time) connectives. Cf. e.g. Cong Tian and Zhenhua Duan'’s
Interval-based ATL [ICFEM 2010]. Enter interval-based separation!

10

The | P|-subset of DC

Vocabulary: sets |/ of state variables P, @, ...
Models: 7:V xR — {0,1}

Finite Variability: For every P € V' and every |a,b] C R there exists a finite

sequence t) = a < t; < ... <t, = bsuch that A\t.I(P,t) is constant in
(ti—latz’)y 1= 1, ey N

Syntax: state expressions S and formulas A:

S:=0|P|S=S

Au=false | [| | [S]]| A=A | A A

11

Semantics: [;(S) and I, [a,b] = A
S:=0|P|S=S8 Au=fase |[]|[S]| A=A AA
L(0)20, IL(P)=I(P,t), IL(S1= S5)= max{I;(Ss),1— I(S1)}.

I,|a,b] & false, I,la,b] =] iff a=0b

I,[a,b] = [S] iff a<band {tela,b]:(5) =0} is finite

I,|la,b|=A= B iff I |la,b]=DBorl,lab]=A

I,[a,b] E A;B iff I,[a,m]|E A and I,[m,b] = B for some m € [a, D]
Abbreviations: T, =, A, V and < are defined as usual.

1=0=20 CA=T; AT OA=-C-A ...

A; B is written A7 B in much of the literature on DC.

Validity: = A, if I, |a,b] = A for all I and all intervals [a, b].

12

The Defining Clauses for &; and <, Are the Same

I,[a,b] = A iff I,[a’,a] = A for some o' < a,

I,|a,b] =< A ff 1], b] = A for some b > b.

In &; and <., ; and ;- stand for left (past) and right (future), respectively.
DC-NL=DC + &) + <.

13

Iteration: DC’s chop-based Form of Kleene Star is the
Natural Counterpart of chop-star Too

I,|a,b] = A* iff a =10 or there exists a finite sequence
mog=a<mg<---<m, = bsuch that
I,mi—1,m;|EAfori=1,...,n.

Positive iteration A" and iteration are interdefinable:

AT ZA; (A", EA* S [[VAT

DC™ =DC + iteration.

DC-NL" =DC + &) + <, + iteration.

14

Separation in DC-NL and DC-NL"

DC-NL (resp. DC-NL") introspective, future and past formulas are like in ITL:
C:u=false | [| | |[S] | C=C|C;C | C*
Pu=C|-P|PVP|OP, Fu=C|-F|FVF|OF

Strict Forms of Future and Past Formulas Are DC-Specific

A strictly past (strictly future) formula is a boolean combination of &; (<))
formulas whose operands are non-strictly past (non-strictly future):

SP: =P | SP=SP SF ::=F | SF = SF

| S'] is not affected by varying I;(S) at single time instants, such as the
midpoint in DC's chop. Given I : V x R — {0, 1},
I,|a,b] = Cis a condition on Iy 4 p)-

I,|a,b] = SF is a condition on Iy (b 4o0)

I,|a,b] = SP is a condition on Iy y(—cc,q]

15

The Separation Theorem for DC-NL and DC-NL”

A separated formula A is a boolean combination of strictly past, strictly future

and introspective formulas:
A:=C | SP| SF | A=A
In separated formulas,
<1 is not allowed in the scope of chop, iteration and <;

<&, is not allowed in the scope of chop, iteration and <.

Theorem: Every formula in the [P]-subset of DC-NL (DC-NL™) is equivalent
to a separated formula in the [P]-subset of DC-NL (DC-NL™).

16

The Companion Result: Expressive Completeness
[Rabinovich, LICS 2000]
The LTL prototype is known to be related with expressive completeness.

The same subset of DC was proven expressive complete by Rabinovich wrt a
corresponding monadic second order theory. (LTL's is first order.)

In principle, a proof of separation using expressive completeness is doable in
this setting.

Such a proof seems to be no less trivial than the one on the example of the
discrete time ITL proof. It may as well be publishable. ..

17

The Proof: A collection of valid equivalences to apply as
transformation rules!

Two collections of equivalences:

for the particular cases of extracting <;, <, from the scope of other
operators, and

for a transformation that recurs in the them:
Aq,..., Ay is a full system, if = \/ Ax and = = (A, A Ag,) for k1 # ko.
k=1
The Key Lemma. Let A be a [P]-formula in DC (DC™). Then there exists

an n < w and some DC (DC*) [P]-formulas A, A}, k=1,...,n, such that
Aq,..., A, is a full system and

(1) FAe \/ A, and EAe N\ (A -47).
k=1 k=1

Let h.(A) be the “-height of A. Then, furthermore, h,(Ax) < h.(A) and
ho(AL) < hu(A).

18

Proof of the Key Lemma

=L e (T:1) =1 < (EIDVEEL)
=[Pl < (PEAPIVID)VILTPD VATV P]); L)

Let By,...,B,, By,...,B., Cy,....Cp, C1,...,C! satisfy (1) for B and C,
respectively. Then:

=BopC<« \/ (B ANC)); (B opC)), ope{=,V,\, &}

k=11=1

= B;C & \/ (Bk NN (B;C) A N _‘(B;Cl))Q ((Bl/c?C) Y CZ)
k=Lyen leX 1ZX lex

For the equivalence about iteration, let C1,...,C,,, and C1,...,C! satisfy

(1) for C=BV []|. Then B* < C*, and:

=5 e v (ABsan Ama)) (V)

leX l¢X leX

19

Mirror Statements

All the technicalities in the proof come in pairs: along with every statement, its
time mirror holds too.

The validity of the time mirrors of valid statements follows from the time
symmetry in the semantics of chop, iteration, <; and <.

Mirror statements are obtained by
exchanging the operands of chop;
replacing <&; by <, and vice versa.

E.g., the mirror statement of the Key Lemma is

Mirror Key Lemma. Let A be a [P]-formula in DC (DC™). Then there
exists an n < w and some DC (DC") [P]-formulas Ay, A}, k=1,...,n, such
that Aq,..., A, is a full system and

=As \/ A A and EAS N\ S(-4L; Ay,
k=1 k=1

20

Separating <;-formulas

Consider <A, where A is already separated.
A can be assumed to be in DNF.

Since
= O1(A1 V Ag) & A1 V O A,

A can be assumed to be a conjunction of possibly negated non-strictly past
formulas P and strictly future formulas €<, F),. We have

‘: O (P/\ /\ 5k<>frFk> & OP A /\((H /\5k<>rFk>§—|—) :
k=1 k=1

Hence separating <; A boils down to separating the chop formulas
([TAeOrFg); T).

21

Separating chop-formulas
Again, since = (L1 V Ls); R < (L1; R) V (L2; R) and
= L;(R1V Ry) < (L;Ry) V (L; Rg),
we need to do only conjunctions of introspective formulas and possibly negated
past <;-formulas or future <,.-formulas.

Past <;-formulas (future &,.-formulas) can be extracted from the left (right)
operand of chop using

= (LANeCP);R<e (L;R)ANeQP and = L; (RAeC,F) < (L; R) ANel, F.

It remains to do (L A A\ €< Fy); R.
k=1

n

The mirror transformations work for P; (RN N\ €1 Py).
k=1

22

Separating (P A N\ €O Fr); R
k=1

Consider (L A e F); R where e F=¢1<0 Fy and L=P A N €0 Fy.
k=2

Again F' of £0,. F' can be assumed to be a conjunct (of a DNF).

Let F' be C' A G where C' is introspective and G is strictly future.
Let C,C), kK =1,...,n, satisfy the Key Lemma for C'. Then

— (LAC(CAG)): R (L (RA(CAG: true))) vV \/ (L: (RACi)) A Sn(Cl AG)

N—— k—1
=F . =F
= (LA (CNANG));; R k\z/l(L; (RACkx AN=((C NG);true))) A= (Cy AG).
_F —F

To finish the separation, the blue occurrences of G must be extracted from
the scope of chop. This is possible because G's <,-height is lower than F's.

23

Separating iteration formulas in DC-NL"
Separating iteration formulas in DC-NL™ can be done using
(1) quantification over state in DC
and

(2) the fact that quantification over state can be eliminated in the [P|-subset
of DC.

I,[a,b) =dPAiff I’ |a,b] = A for some I’ such that I'(Q,t) = I(Q,t) and
all Q e V\ {P}, t € R.

Quantification over state is expressible in the [P]-subset of DC™:

Theorem: For every [P|-formula A in DC* and every state variable P there
exists a (quantifier-free) [P|-formula B in DC* such that = B < 3 P A.

Importantly, B is not guaranteed to be iteration-free, even in case A is.

However introducing fresh occurrences of iteration upon quantifier elimination
Is used if iteration already occurs in the formula to be separated.

24

Extracting ;- and <,-formulas from the scope of iteration

Let B of B* be \/B where B, = H, /\/\5 <>lP/\/\€f O, F.

s=1 1=

Then B* is equivalent to

37357 ... 83s5] .. ([T1 [=T]) A {/(B A/\(ssz zM/\W 5]))

The satisfying assignment of T, 5%, ..., 5P, 8! ..., S/ is such that

SZ’L

endpoints of the intervals which must satisfy 7 ;& P; for B, to hold,

(1) the left endpoints of the maximal T' A ¥ . S¥-subintervals are the left

and

(2) the right endpoints of the maximal =71 A 5f’JSJf subintervals are the right

endpoints of the intervals which must satisfy af <Oy for B to hold.

25

Separating iteration formulas in DC-NL"

The correspondence between the assignments of <,.F’;, and T" and ij can be
expressed by the formulas

o = (true; rSj]) = OrF; N = ((true; |—Sj A TN (([T]5 true) A = ((OrFj A)5 true))) A
! (true; [=ST1) = =07 Fj A ~((true; [=ST A ~T1)5 (1T true) A (07 Fj A [1)s true)))

and their past mirrors 7;, for the correspondence between &) F;, and T and S7.

Hence B* is equivalent to

s—1 s,1 1 5,777

D Poaf f
3Tr3sy ... 3sh3s{ ...35]

t u v *
(rTir-TD A Vo Hs A A TR SPIA A Tel sT)
=1 j=1
VAN
The separation procedure can now be concluded by
— separating m; and o;;

— taking the ;- and the &,.-subformulas of the separated equivalents of 7;
and ¢, out of the scope of the quantifier prefix;

— eliminating the quantifier prefix from the remaining introspective formula.

26

The End

27

