
Linear Temporal Logic:
From Infinite to Finite Horizon

Moshe Y. Vardi

Rice University



Reactive Systems

Reactivity: Ongoing interaction with environment (Harel+Pnueli,
1985), e.g., hardware, operating systems, communication protocols, robots,
etc. (also, open systems).

Example: Printer specification – Ji - job i submitted, Pi - job i printing.

• Safety: two jobs are not printing together

• Liveness: every jobs is eventually printed

Crux: Behavioral requirements over infinite traces rather than input/output
requirements

1



Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli,
1977) – Main feature: time is implicit

• next ϕ: ϕ holds in the next state.
• eventually ϕ: ϕ holds eventually
• always ϕ: ϕ holds from now on
• ϕ until ψ: ϕ holds until ψ holds.

Semantics: over infinite traces (non-termination)

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

2



Examples

• always not (CS1 and CS2): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies (Request until (¬Request∨ Grant))): liveness

• always ((always eventually Request) implies eventually Grant): liveness

3



Printer

Example: Printer specification – Ji - job i submitted, Pi - job i printing.

• Safety: two jobs are not printing together
always ¬(P1 ∧ P2)

• Liveness: every jobs is eventually printed
always

∧2
j=1(Ji → eventually Pi)

4



Verification

Model Checking:
• Given: Program P , Specification ϕ.
• Task: Check that P satisfies ϕ

• Algorithmic methods: temporal specifications and finite-state programs.
• Also: Certain classes of infinite-state programs
• Tools: SMV, SPIN, SLAM, etc.
• Impact on industrial design practice is increasing.

Challenges:

• Designing P is hard and expensive.
• Redesigning P when P does not satisfy ϕ is hard and expensive.

5



Automated Design

Basic Idea:

• Start from spec ϕ, design P s.t. P satisfies ϕ.
Advantage: No verification, no re-design
• Derive P from ϕ algorithmically.

Advantage: No design

In essenece: Declarative programming taken to the limit.

Harel, 2008: “Can Programming be Liberated, Period?”

6



Program Synthesis

The Basic Idea: “Mechanical translation of
human-understandable task specifications to a
program that is known to meet the specifications.”

Deductive Approach (Green, 1969, Waldinger and Lee, 1969,
Manna and Waldinger, 1980): Prove realizability of function, e.g.,
(∀x)(∃y)(Pre(x)→ Post(x, y)); Extract program from realizability proof.

Classical vs. Temporal Synthesis:

• Classical: Synthesize input/output programs
• Temporal: Synthesize programs for ongoing computations (of reactive

systems)

7



Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s: Satisfiability approach
(Wolper, Clarke+Emerson, 1981)
• Given: ϕ
• Satisfiability: Construct model M of ϕ
• Synthesis: Extract P from M .

Example: always (odd→ next ¬odd)∧
always (¬odd→ next odd)

odd -
� odd

�
�

�
�

�
�

�
�

8



Satisfiability and Synthesis

Print-Server Specification Satisfiable? Yes!

Model M : A single state where J1, J2, P1, and P2 are all false.

Extract program from M? No!

Why? Because M handles only one input sequence.

• J1, J2: input variables, controlled by environment
• P1, P2: output variables, controlled by system

Desired: a system that handles all input
sequences.

Conclusion: Satisfiability is inadequate for synthesis.

9



Realizability

I: input variables, O: output variables

Game: System: choose from 2O, Env: choose from 2I

Infinite Play: (i0, o0), (i1, o1), (i2, o2), . . .

Win: Behavior satisfies spec ϕ(I,O)

Strategy: Function f : (2I)∗ → 2O

Realizability: [Abadi+Lamport+Wolper, 1989
Pnueli+Rosner, 1989a]: Existence of winning strategy for
specification.

Desideratum: A universal plan! Why: Autonomy!

10



Church’s Problem

Church, 1957: Realizability problem wrt specification expressed in MSO
(monadic second-order theory of one successor function)

Büchi+Landweber, 1969:

• Realizability is decidable.
• If a winning strategy exists, then a finite-state winning strategy exists.
• Realizability algorithm produces finite-state strategy – synthesis.

Rabin, 1972: Simpler solution via Rabin tree automata.

Question: LTL is subsumed by MSO, so what did
Pnueli and Rosner do?
Answer: better algorithms!

11



Strategy Trees

Infinite Tree: D∗ (D - directions)

• Root: ε; x ∈ D∗ ⇒ Children: xd, d ∈ D

Labeled Infinite Tree: τ : D∗ → Σ

Strategy: f : (2I)∗ → 2O

Rabin’s insight: A strategy is a labeled tree with
directions D = 2I and alphabet Σ = 2O.

Rabin, 1972: Finite-state automata on infinite trees

12



Emptiness of Tree Automata

Emptiness: L(A) = ∅

Emptiness of Automata on Finite Trees: PTIME test (Doner, 1965)

Emptiness of Rabin Automata on Infinite Trees: Difficult

• Rabin, 1969: non-elementary
• Hossley+Rackoff, 1972: 2EXPTIME
• Rabin, 1972: EXPTIME
• Emerson, V.+Stockmeyer, 1985: In NP
• Emerson+Jutla, 1991: NP-complete

13



Rabin’s Realizability Algorithm

REAL(ϕ):

• Construct Rabin tree automaton Aϕ that accepts all winning strategy
trees for spec ϕ.
• Check non-emptiness of Aϕ.
• If nonempty, then we have realizability; extract strategy from non-

emptiness witness.

Complexity: non-elementary

Reason: Aϕ is of non-elementary size for spec ϕ in MSO.

14



Post-1972 Developments

• Pnueli, 1977: Use LTL rather than MSO as spec language.
• V.+Wolper, 1983: Elementary (exponential) translation from LTL to

automata.
• Safra, 1988: Doubly exponential construction of tree automata for

strategy trees wrt LTL spec (using V.+Wolper).
• Rosner+Pnueli, 1989: 2EXPTIME realizability algorithm wrt LTL spec

(using Safra).
• Rosner, 1990: Realizability is 2EXPTIME-complete.

15



Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response:

• 2EXPTIME is just worst-case complexity.
• 2EXPTIME lower bound implies a doubly exponential bound on the size

of the smallest strategy; thus, hand design cannot do better in the worst
case.

2EXPTIME: Need not be an insurmountable problem, but algorithmics is
very challenging!

16



Automata on Infinite Words

Nondeterministic Büchi Automaton on Words (NBW)
A = (Σ, S, s0, ρ, F )
• Alphabet: Σ
• States: S
• Initial state: s0 ∈ S
• Transition function: ρ : S × Σ→ 2S

• Accepting states: F ⊆ S

Input word: a0, a1, . . . Run: s0, s1, . . . – si+1 ∈ ρ(si, ai) for i ≥ 0
Acceptance: F visited infinitely often

Motivation: (1) characterizes ω-regular languages; (2) equally
expressive to MSO (Büchi 1962); (3) more expressive than LTL

17



Examples

((0 + 1)∗1)ω:

- •
6

� �
0

1
-

�

0
•����
6

� �
1

– infinitely many 1’s

(0 + 1)∗1ω:

- •
6

� �
0, 1

1
- •����

6

� �
1

– finitely many 0’s

18



Temporal Logic vs. Büchi Automata

Paradigm: Compile high-level logical specifications into low-level finite-
state language

The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula ϕ, one can construct an
NBW Aϕ such that a computation σ satisfies ϕ if and
only if σ is accepted by Aϕ. Furthermore, the size of Aϕ

is at most exponential in the length of ϕ.

19



Temporal Logic vs. Büchi Automata: Examples

always eventually p:

- •
6

� �
p

p
-

�

p
•����
6

� �
p

– infinitely many p’s

eventually always p:

- •
6

� �
p, p

p
- •����

6

� �
p

– finitely many p’s

20



Realizability Games

NBW Games:
• S choose output value a ∈ Σ
• E choose input value b ∈ ∆
• Round: S and E set their variables
• Play: infinite word in (Σ×∆)ω

• Specification: NBW A over the alphabet Σ×∆
• S wins when infinite play is accepted by by A.

A Mismatch:

• Nondeterministic automata have “foresight”.
• Strategies do not have foresight.

Solution: Determinize A

21



Determinization

Key Fact (Landweber, 1969): Nondeterministic
Büchi automata are more expressive than
deterministic Büchi automata.

Example: (0 + 1)∗1ω:

- •
6

� �
0, 1

1
- •����

6

� �
1

– finitely many 0’s

McNaughton, 1966: NBW can be determinized using more general
acceptance condition – blow-up is doubly exponential.

22



Parity Automata

Deterministic Parity Automata (DPW)
A = (Σ, S, s0, ρ,F)
• F = (F1, F2, . . . , Fk) - partition of S.
• Parity index: k
• Acceptance: Least i such that Fi is visited

infinitely often is even.

Safra, 1988: NBW with n states can be translated to DPW with nO(n)

states and parity index O(n).

23



Parity Games

Game Graphs: G = (V0, V1, E, vs,W)
• E ⊆ (V0 × V1) ∪ (V1 × V0)
• vs: start node
• W ⊆ V0 ∪ V1: winning set
• Player 0 moves from V0,

Player 1 moves from V1.
• W = (W1,W2, . . . ,Wk) – partition of V0 ∪ V1
• Play 0 wins: least i such that Wi is visited

infinitely often is even.

Solving Parity Games:

• Calude et al., 2017: Quasi-PTIME

Open Question: In PTIME?

24



LTL Synthesis

Algorithm for LTL Synthesis:
• Convert specification ϕ to NBW Aϕ

(exponential blow-up)
• Convert NBW Aϕ to DPW Ad

ϕ (exponential
blow-up)
• Solve parity game for Ad

ϕ (quasi-polytime)

Pnueli-Rosner, 1989: LTL realizability/synthesis is 2EXPTIME-
complete.

• Transducer: finite-state program with doubly exponentially many states

25



Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice:

• Mona: MSO on finite words
• Linear-Time Model Checking: LTL on infinite words

Experiments with Automata-Theoretic Approach:

• Symbolic decision procedure for CTL (Marrero 2005)
• Symbolic synthesis using NBT (Wallmeier-Hütten-Thomas 2003)

26



LTL Synthesis

Why LTL synthesis is so hard?
• NBW determinization is hard in practice: from

9-state NBW to 1,059,057-state DRW (Althoff-
Thomas-Wallmeier 2005)
• NBW determinization is hard in practice: no

symbolic algorithms
• Parity games are hard in practice!

Esparza-Kretnsky-Sickert, 2020: Direct translation from LTL to ω-automata
– but still hard!

27



Solution: General Reactivity (1)

Piterman-Pnueli-Sa’ar, 2006: Limit LTL
specification: (AlwaysEventually P ) →
(AlwaysEventually Q)

Pros:

• Cubic game solvability (wrt game size)
• Tools, e.g., Slugs
• Broad applicability – popular in robotics

Cons: low expressiveness!

28



A New Approach: Finite-Horizon Reasoning

De Giacomo–V., 2013: LTLf – LTL on finite traces

Example: Always Eventually p – p holds at final state of trace.

Motivation: AI planning, robot task-motion planning, business processes

Remark: Note popularity of Co-safe LTL.

Cons: 2EXPTIME-complete, Pros: Easier algorithmics

29



Classical AI Planning

Deterministic Finite Automaton (DFA)
A = (Σ, S, s0, ρ, F )
• Alphabet: Σ
• States: S
• Initial state: s0 ∈ S
• Transition function: ρ : S × Σ→ S
• Accepting states: F ⊆ S

Input word: a0, a1, . . . , an−1 Run: s0, s1, . . . , sn

• si+1 = ρ(si, ai) for i ≥ 0; Acceptance: sn ∈ F .

Planning Problem: Find word leading from s0 to F .

• Realizability: L(A) 6= ∅; Program: w ∈ L(A)

30



Reachability Games

Game Graphs: G = (V0, V1, E, vs,W )
• E ⊆ (V0 × V1) ∪ (V1 × V0)
• vs: start node
• W ⊆ V0 ∪ V1: winning set
• Player 0 moves from V0, Player 1 moves from
V1.
• Player 0 wins: reach W .

Fact: Reachability games can be solved in linear time –least fixpoint
algorithm

31



Universal Planning

DFA Games:
• S choose output value a ∈ Σ; E choose input

value b ∈ ∆
• Round: S and E set their values
• Play: word in (Σ×∆)∗

• Specification: DFA A over the alphabet Σ×∆
• S wins when play is accepted by by A.

Realizability and Synthesis: Strategy for S – τ : ∆∗ → Σ

• Realizability – exists winning strategy for S
• Synthesis – obtain such winning strategy.

32



Solving DFA Games

A = (Σ×∆, S, s0, ρ, F )

Define wini(A) ⊆ S inductively:
• win0(A) = F
• wini+1(A) = wini(A)∪
{s : (∃a ∈ Σ)(∀b ∈ ∆)ρ(s, (a, b)) ∈ wini(A)}

Lemma: S wins the A game iff s0 ∈ win∞(A).

Bottom Line: linear-time, least-fixpoint algorithm for DFA realizability.
What about synthesis?

33



Transducers

Transducer: a finite-state representation of a
strategy– deterministic automaton with output
T = (∆,Σ, Q, q0, α, β)
• ∆: input alphabet
• Σ: output alphabet
• Q: states
• q0: initial state
• α : S ×∆→ S: transition function
• β : S → Σ: output function

Key Observation: A transducer representing a winning strategy can be
extracted from win0(A), win1(A), . . .

34



Algorithmic Ideas

Observations

• If ϕ is an LTLf formula, then it can be translated to DFA [De
Giacomo+V., 2013].
• Solve DFA games for realizability and synthesis.

Implementation [Zhu-Tabajara-Li-Pu-V., 2017]:

• Translate ϕ to FOL, and use MONA to translate to BDD-based Symbolic
DFA.
• Solve DFA game symbolically
• Open Tool: Syft

35



Performance Comparison

 0

 50

 100

 150

 200

1 2 3 4 5

N
u
m

b
e
r 

o
f 

so
lv

e
d

 c
a
se

s

Length of the formula

Syft
Acacia+

36



Discussion

Question: Can we hope to reduce a 2EXPTIME-complete approach to
practice?

Answer:

• Worst-case analysis is pessimistic.
– Mona solves nonelementary problems.
– SAT-solvers solve huge NP-complete problems.
– Model checkers solve PSPACE-complete problems.
– We need algorithms that blow up only on hard instances!
– More algorithmic research needed!
• Question Can “DFA Technology” be used beyond LTLf?

37



Application: Safety LTL

Normal Form for Safety Temporal Properties:

Zhu-Tabajara-Li-Pu-V., 2017: Limit LTL
specification: No Until or Eventually

Example: Replace Always(Snd → EventuallyRcv) by
Always(Snd→ NextNextNextRcv)

Pros:

• Linear game solvability (wrt game size)
• Tools, e.g., Ssyft

38



Algorithmic Ideas

Observations

• If ϕ is a Safety LTL formula, then ¬ϕ is a co-safety formula, which can
be translated to DFA [Kupferman+V., 2000].

• Solve for adversary in DFA game.

• Translate ¬ϕ to FOL, and use MONA to translate to BDD-based
Symbolic DFA.

• Solve DFA game symbolically.

39



Performance Comparison

40



Best of all Possible Worlds

Two success stories in temporal synthesis

• GR(1)
• Finite-horizon synthesis

Question: Can the two approaches be combined?

Comment: Finite-horizon goals may require infinite-horizon assumptions,
e.g., EventuallyReceived may require AlwaysEventuallyChannelUp.

De Giacomo, Di Stasio, Tabajara, V., S. Zhu, IJCAI’21: Finite-Trace and
Generalized-Reactivity Specifications in Temporal Synthesis – use finite-
horizon techniques to construct game arena and solve GR(1) games on that
arena – outperforms LTL synthesis

41



In Conclusion

The Siren Song of Temporal Synthesis

• LTL Synthesis: a seductive idea
• But: horrible complexity and challenging algorithmics

Conclusion: high price for infinite-horizon semantics

Life Wisdom: You can run further by running slower. Time to consider
finite-horizon temporal reasoning!

42


